

European Journal of Pharmacology 442 (2002) 173-177

Review

The cardioprotection of calcitonin gene-related peptide-mediated preconditioning

Yuan-Jian Li*, Jun Peng

Department of Pharmacology, Xiang-Ya School of Medicine, Central South University, Changsha Hunan, 410078, PR China Received 31 January 2002; received in revised form 11 March 2002; accepted 15 March 2002

Abstract

Preconditioning induced by brief ischemia or hyperthermia or some drugs shows two phases, early and delayed protection. The cardioprotection afforded by preconditioning is related to stimulation of endogenous mediators release. Calcitonin gene-related peptide (CGRP), a major transmitter of capsaicin-sensitive sensory nerves, has recently been shown to play an important role in mediation of the preconditioning induced by brief ischemia or hyperthermia or by some drugs, and α -CGRP seems to play a major role in the mediation of delayed preconditioning. It has been shown that the cardioprotection afforded by CGRP-mediated preconditioning is due to inhibition of cardiac tumor necrosis factor- α (TNF- α) production, but not to the activation of the K_{ATP} channel. © 2002 Published by Elsevier Science B.V.

Keywords: Preconditioning; CGRP (calcitonin gene-related peptide); Capsaicin; Reperfusion injury; TNF-α (tumor necrosis factor-α)

1. Introduction

Since the term ischemic preconditioning was originally recognized by Murry et al. (1986), considerable progress has been made in understanding this phenomenon. Ischemic preconditioning shows two phases: an early phase of protection termed "classic preconditioning", which occurs within minutes and disappears within 2 to 4 h. Subsequently, a delayed phase of protection termed "second window of protection" appears 24 h after initial ischemic preconditioning and lasts for 48 to 72 h. Preconditioning of the heart has been exploited from ischemic stimulus to heat stress and some drugs (Pagliaro et al., 2001; Bolli, 2000).

The mechanisms underlying preconditioning have not yet been elucidated but one suggestion is that the protective effect is mediated by endogenous active substances, including neurotransmitters and autocoids (Parratt, 1994). We and others have shown that endogenous calcitonin gene-related peptide (CGRP) plays an important role in mediation of preconditioning (Li et al., 2000).

E-mail address: Liyj@public.cs.hn.cn (Y.-J. Li).

2. The biology characteristic of CGRP

CGRP is a major transmitter in capsaicin-sensitive sensory nerves and has two isoforms named $CGRP_{\alpha}$ and $CGRP_{\beta}$. $CGRP_{\alpha}$ was cloned in the early 1980s from the gene encoding calcitonin (Amara et al., 1982). In the thyroid, calcitonin is the main product of this gene, whereas, in neural tissues, a novel neuropeptide, CGRP_{\alpha}, is generated. A second CGRP homologue, $CGRP_{\beta}$, was later characterized, bearing high sequence homologies with the α -form but that was not derived from the calcitonin gene (Amara et al., 1985). Subsequently, CGRP has been identified and characterized in several mammalian species, including the human (Morris et al., 1984). CGRP is a polypeptide that contains 37 amino acids, with a molecular weight of 3787 for human $CGRP_{\alpha}$, and with marked homology of amino acid sequence between species (Collyear et al., 1991). $CGRP_{\alpha}$ and $CGRP_{\beta}$ differ from each other by only one amino acid in rats, and by three amino acids in humans. In the human, both genes are located on the short arm of chromosome 11 between the catalase and parathyroid hormone genes (Kittur et al., 1985; Hoppener et al., 1985; Alevizaki et al., 1986). The α gene, consisting of six exons, stretches over approximately 6.5 kb and is transcribed in full. The organization of the β gene is similar to that of the α gene, but both 3' and 5' non-coding regions of the two genes diverge significantly.

^{*} Corresponding author. Tel.: +86-731-4805441; fax: +86-731-4471289

CGRP interacts with its receptor to produce physiopharmacological effects, such as positive inotropic actions, vasorelaxation, and protective effects of myocytes and endothelial cells (Kallner, 1998). There exist at least two classes of CGRP receptors, CGRP₁ and CGRP₂ (Dennis et al., 1990; Gardiner et al., 1990). The receptors belong to the rhodopsin-like superfamily of G-protein-coupled receptors (Aiyar et al., 1996). Cardiovascular effects of CGRP are mediated by the CGRP₁ receptor, which can be blocked by the CGRP receptor antagonist, CGRP-(8–37).

3. CGRP and ischemic preconditioning

The release of CGRP is regulated by multiple factors, such as transient ischemia, hyperthermia or autocoids, and the elevated level of CGRP during ischemia probably constitutes a compensatory response (Kallner, 1998; Franco-Cereceda, 1988; Kress and Zeilhofer, 1999). Administration of exogenous CGRP has been shown to alleviate the incidence of reperfusion-induced ventricular arrhythmia and to protect the cultured myocyte against hypoxygen injury (Zhang et al., 1994; Ren et al., 1993). It has been reported that pretreatment with high-dose capsaicin to deplete endogenous CGRP exacerbates the ischemia-reperfusion injury in the porcine heart (Kallner and Franco-Cereceda, 1998). Clinical studies have shown that the CGRP concentration in plasma was significantly elevated in patients with myocardial infarction (Lechleitner et al., 1992). These findings suggest that CGRP may be an endogenous myocardium protective substance.

Recently, we and others have shown that CGRP plays an important role in the mediation of ischemic preconditioning (Li et al., 1996; Ferdinandy et al., 1997; Lu et al., 1999). In the isolated perfused rat heart, the CGRP concentration in the coronary effluent was elevated during the preconditioning period. Ischemic preconditioning significantly improved the recovery of cardiac function during reperfusion after 30 min of global ischemia, and this cardioprotection by ischemic preconditioning was abolished by CGRP-(8-37), a selective CGRP₁ receptor antagonist. Exogenous CGRP or pretreatment with capsaicin to evoke the release of endogenous CGRP produced a preconditioning-like cardioprotection (Zhou et al., 1999). In rats pretreated with high-dose capsaicin to desensitize sensory nerves, the cardioprotection by pacing-induced preconditioning was abolished (Ferdinandy et al., 1997). The protective effect of ischemic preconditioning in vivo was also abolished by CGRP antibody (Ou-Yang et al., 1999). Clinical studies have shown that the cardioprotection by ischemic preconditioning is associated with the release of CGRP (Lu et al., 1996; Kallner et al., 1999; Li et al., 1999, 2001). Furthermore, delayed cardioprotection or gastroprotection by intestinal or gastric preconditioning is mediated by CGRP (Tang et al., 1999; Xiao et al., 2001; Pajdo et al., 2001).

4. CGRP and heat stress-induced cardioprotection

It has been documented that sublethal hyperthermia is also capable of inducing preconditioning-like protection, including classical or early preconditioning and delayed preconditioning or "second window" protection (Gowda et al., 1998; Yamashita et al., 1998). The mechanism responsible for the beneficial effect of heat stress is still not fully understood. Early studies have found that a stress, cold or heat, is also capable of activating capsaicin-sensitive sensory nerves and stimulating the release of neurotransmitters from their peripheral terminals (Tsuchiya et al., 1996; Kress and Zeilhofer, 1999). Based on the involvement of CGRP in the mediation of ischemic preconditioning, it is likely that the cardioprotection afforded by heat stress is mediated by endogenous CGRP. Recent studies have shown that retrograde hyperthermia reperfusion (42 °C) in the isolated rat heart for 5 min significantly improved the recovery of cardiac function, and decreased the release of creatine kinase concomitantly with an increase in the level of CGRP in coronary effluent. Whole-body hyperthermia for 15 min also induced early and delayed cardioprotection or improved the preservation with cardioplegia and increased the plasma concentration of CGRP, which was abolished by pretreatment with capsaicin to deplete CGRP in sensory nerves (Song et al., 1999a,b).

5. CGRP and pharmacological preconditioning

Substitution of some drugs for ischemic stimulus is also capable of inducing a protection similar to that with ischemic preconditioning and this is described as pharmacological preconditioning. The protective effects of some drug-induced preconditioning have been suggested to be related to stimulation of endogenous active substances. For example, angiotensin-converting enzyme inhibitors or monophospheryl lipid A-induced preconditioning protects the myocardium against damages due to ischemia-reperfusion through stimulation of nitric oxide generation (Jin and Chen, 1998; Zhao et al., 1997; Tosaki et al., 1998; Xi and Kukreja, 2000). Previous investigations have shown that endogenous nitric oxide can regulate the release of CGRP, and one can postulates that the protective effects of some drugs, which evoke the release of nitric oxide or induce the production of nitric oxide, may involve endogenous CGRP. There is evidence that, in isolated rat hearts, pretreatment with nitroglycerin, a nitric oxide donor, for 5 min significantly attenuates ischemia-reperfusion injury and increases the release of CGRP in coronary effluent. The effects of nitroglycerin are abolished by CGRP-(8-37) or pretreatment with capsaicin (Hu et al., 1999). Studies in vivo have shown that nitroglycerin-induced delayed preconditioning is also mediated by CGRP (Zhou et al., 2001). A similar effect has been seen in the rat small intestine (Dun et al., 2001).

Involvement of endogenous nitric oxide in monophospheryl lipid A-induced delayed protection has been demonstrated in different animal species (Tosaki et al., 1998; Yoshida et al., 2000). Our recent study has shown that monophospheryl lipid A-induced delayed preconditioning enhances preservation with cardioplegia and that the protective effects of monophospheryl lipid A are related to stimulation of CGRP release via the nitric oxide (NO) pathway (He et al., 2001). In order to test whether the increase of CGRP with monophospheryl lipid A is secondary to stimulation of CGRP synthesis, the expression of CGRP in lumbar dorsal root ganglia was measured. Monophospheryl lipid A-induced delayed preconditioning reduced infarct size and creatine kinase release concomitantly with an increase in the release and synthesis of CGRP, which was abolished by pretreatment with the nitric oxide synthase inhibitor, Lnitroarginine methyl ester, or the heme oxygenase-1 inhibitor, Zinc protoporphyrin IX (Peng et al., 2002b). These findings further support the conclusion that preconditioning mediated by nitric oxide, endogenous or exogenous, is related to the stimulation of the release and synthesis of CGRP.

6. Mechanisms of CGRP-mediated cardioprotection

The exact mechanisms responsible for the protective effects of CGRP remain unclear. Endogenous mediators including neurotransmitters bind to specific receptors and then activate the endogenous protective mechanisms via complex signal pathways, which are related to the activation of protein kinase C or ATP-sensitive K+ (K_{ATP}) channels. There is evidence to suggest that CGRP enhances the activity of protein kinase C and activates K_{ATP} channels in vascular smooth muscle (Bell et al., 1995; Wellman et al., 1998). It is probable that CGRP-mediated preconditioning activates protein kinase C and/or K_{ATP} channels. It has been shown that exogenous CGRP or pretreatment with capsaicin to evoke the release of endogenous CGRP produces preconditioninglike cardioprotection, an effect which can be abolished by the protein kinase C inhibitor, 1-(5-isoquinolinylsulfonyl)-2methylpiperazine (Peng et al., 1996). However, the cardioprotection afforded by CGRP-mediated preconditioning is not affected by glibenclamide, a blocker of K_{ATP} channels. Recently, it has been shown that ischemic preconditioning or exogenous CGRP-induced preconditioning dramatically reduces cardiac tumor necrosis factor- α (TNF- α) production, an ultimate effector in signal transduction pathways of ischemic preconditioning (Meldrum et al., 1998; Peng et al., 2000; He et al., 2001). These findings suggest that the cardioprotection afforded by CGRP-mediated preconditioning is due to the inhibition of cardiac TNF- α production via protein kinase C signal transduction pathways.

It is noteworthy that, of the two isoforms, α -CGRP seems to play a major role in the mediation of delayed preconditioning. Previous studies suggested that there were no dis-

tinguishable differences in biological activity between α -and β -CGRP (McLatchie et al., 1998). However, recent investigations have shown that only α -CGRP elicits effects on axonal transport in sensory neurons (Hiruma et al., 2000), and only α -CGRP mRNA has been detected in the enteric nervous system of rat small intestine (Doi et al., 2000), and only β -CGRP mRNA, but not α -CGRP mRNA, has been detected in rat T lymphocytes (Xing et al., 2000). These findings suggest that there are some unknown differences in biological actions between α - and β -CGRP. Our recent studies have also shown that monophospheryl lipid A or heat stress induces only α -CGRP but not β -CGRP mRNA expression (Peng et al., 2002a,c), suggesting that the cardioprotection afforded by monophospheryl lipid A or heat stress is mainly mediated by the α -CGRP isoform in the rat.

7. Summary

The results from animal experiments and clinical studies have shown that CGRP plays an important role in the mediation of ischemic preconditioning. Endogenous CGRP is also involved in mediation of the preconditioning of the heart induced by heat stress or some drugs. It is likely that CGRP-mediated early preconditioning only involves the release of CGRP, while the development of CGRP-mediated delayed preconditioning is related to the upregulation of αbut not β-CGRP gene expression via NO and/or CO pathways. Up to now, multiple endogenous chemical substances have been reported to participate in mediation of preconditioning. CGRP is one of the endogenous chemical substances participating in the mediation of preconditioning. It is most possible that interaction of peptide neurotransmitters with various autocoids mediates the protective effects of preconditioning.

References

Aiyar, N., Rand, K., Elshourbagy, N.A., Zeng, Z., Adamou, J.E., Bergsma, D.J., Li, Y., 1996. Protein A cDNA encoding the calcitonin gene-related peptide type 1 receptor. J. Biol. Chem. 271, 11325–11329.

Alevizaki, M., Shiraishi, A., Rassool, F.V., Ferrier, G.J., MacIntyre, I., Legon, S., 1986. The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 206, 47–52.

Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S., Evans, R.M., 1982.
Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244.

Amara, S.G., Arriza, J.L., Leff, S.E., Swanson, L.W., Evans, R.M., Rosenfeld, M.G., 1985. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229, 1094–1097.

Bell, D., Schluter, K.D., Zhou, X.J., McDermott, B.J., Piper, H.M., 1995. Hypertrophic effects of calcitonin gene-related peptide (CGRP) and amylin on adult mammalian ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 27, 2433–2443.

Bolli, R., 2000. The late phase of preconditioning. Circ. Res. 87, 972–983.
Collyear, K., Girgis, S.I., Saunders, G., MacIntyre, I., Holt, G., 1991.
Predicted structure of the bovine calcitonin gene-related peptide and

- the carboxy-terminal flanking peptide of bovine calcitonin precursor. J. Mol. Endocrinol. 6, 147–152.
- Dennis, T., Fournier, A., Cadieux, A., Pomerleau, F., Jolicoeur, F.B., Pierre, S., Quirion, R., 1990. hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J. Pharmacol. Exp. Ther. 254, 123-128.
- Doi, Y., Peng, H., Kudo, H., Hamasaki, K., Fujimoto, S., 2000. Expression of alpha-calcitonin gene-related peptide in the enteric nervous system of rat small intestine. Neurosci. Lett. 285, 33–36.
- Dun, Y., Hao, Y.B., Wu, Y.X., Zhang, Y., Zhao, R.R., 2001. Protective effects of nitroglycerin-induced preconditioning mediated by calcitonin gene-related peptide in rat small intestine. Eur. J. Pharmacol. 430, 317– 324.
- Ferdinandy, P., Csont, T., Csonka, C., Torok, M., Dux, M., Nemeth, J., Horvath, L.I., Dux, L., Szilvassy, Z., Jancso, G., 1997. Capsaicin-sensitive local sensory innervation is involved in pacing-induced preconditioning in rat hearts: role of nitric oxide and CGRP? Naunyn-Schmiedebergs Arch. Pharmakol. 356, 356–363.
- Franco-Cereceda, A., 1988. Calcitonin gene-related peptide: release by capsaicin and tachykinins in relation to local sensory control of cardiac contractility and coronary vascular tone. Acta Physiol. Scand. 133 (Suppl. 596) 3–63.
- Gardiner, S.M., Compton, A.M., Kemp, P.A., Bennett, T., Bose, C., Foulkes, R., Hughes, B., 1990. Antagonistic effect of human alpha-CGRP [8–37] on the in vivo regional haemodynamic actions of human alpha-CGRP. Biochem. Biophys. Res. Commun. 171, 938–943.
- Gowda, A., Yang, C.J., Asimakis, G.K., Ruef, J., Rastegar, S., Runge, M.S., Motamedi, M., 1998. Cardioprotection by local heating: improved myocardial salvage after ischemia and reperfusion. Ann. Thorac. Surg. 65, 1241–1247
- He, S.Y., Deng, H.W., Li, Y.J., 2001. Monophosphoryl lipid A-induced delayed preconditioning is mediated by calcitonin gene-related peptide. Eur. J. Pharmacol. 420, 143–149.
- Hiruma, H., Saito, A., Ichikawa, T., Kiriyama, Y., Hoka, S., Kusakabe, T., Kobayashi, H., Kawakami, T., 2000. Effects of substance P and calcitonin gene-related peptide on axonal transport in isolated and cultured adult mouse dorsal root ganglion neurons. Brain Res. 883, 184–191.
- Hoppener, J.W., Steenbergh, P.H., Zandberg, J., Geurts, V., Kessel, A.H., Baylin, S.B., Nelkin, B.D., Jansz, H.S., Lips, C.J., 1985. The second human calcitonin/CGRP gene is located on chromosome 11. Hum. Genet. 70, 259–263.
- Hu, C.P., Li, Y.J., Deng, H.W., 1999. The cardioprotective effects of nitroglycerin-induced preconditioning are mediated by calcitonin gene-related peptide. Eur. J. Pharmacol. 369, 189–194.
- Jin, Z.Q., Chen, X., 1998. Ramipril-induced delayed myocardial protection against free radical injury involves bradykinin B2 receptor-NO pathway and protein synthesis. Br. J. Pharmacol. 125, 556–562.
- Kallner, G., 1998. Release and effects of calcitonin gene-related peptide in myocardial ischaemia. Scand. Cardiovasc. J. 49, 1–35 (Suppl.).
- Kallner, G., Franco-Cereceda, A., 1998. Aggravation of myocardial infarction in the porcine heart by capsaicin-induced depletion of calcitonin gene-related peptide (CGRP). J. Cardiovasc. Pharmacol. 32, 500–504.
- Kallner, G., Owall, A., Franco-Cereceda, A., 1999. Myocardial outflow of calcitonin gene-related peptide in relation to metabolic stress during coronary artery bypass grafting without cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 117, 447–453.
- Kittur, S.D., Hoppener, J.W., Antonarakis, S.E., Daniels, J.D., Meyers, D.A, Maestri, N.E., Jansen, M., Korneluk, R.G., Nelkin, B.D., Kazazian Jr., H.H., 1985. Linkage map of the short arm of human chromosome 11: location of the genes for catalase, calcitonin, and insulin-like growth factor II. Proc. Natl. Acad. Sci. U.S.A. 82, 5064–5067.
- Kress, M., Zeilhofer, H.U., 1999. Capsaicin, protons and heat: new excitement about nociceptors. Trends Pharmacol. Sci. 20, 112–118.
- Lechleitner, P., Genser, N., Mair, J., Dienstl, A., Haring, C., Wiedermann, C.J., Puschendorf, B., Saria, A., Dienstl, F., 1992. Calcitonin generelated peptide in patients with and without early reperfusion after acute myocardial infarction. Am. Heart J. 124, 1433–1439.

- Li, Y.J., Xiao, Z.S., Peng, C.F., Deng, H.W., 1996. Calcitonin gene-related peptide-induced preconditioning protects against ischemia—reperfusion injury in isolated rat hearts. Eur. J. Pharmacol. 311, 163–167.
- Li, G., Chen, S., Lu, E., Li, Y., 1999. Ischemic preconditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur. J. Cardiothorac. Surg. 15, 653–657.
- Li, Y.J., Song, Q.J., Xiao, J., 2000. Calcitonin gene-related peptide: an endogenous mediator of preconditioning. Acta Pharmacol. Sin. 21, 865–869.
- Li, G., Chen, S., Lu, E., Luo, W., 2001. Cardiac ischemic preconditioning improves lung preservation in valve replacement operations. Ann. Thorac. Surg. 71, 631–635.
- Lu, E.X., Peng, C.F., Li, Y.J., Cheng, S.X., 1996. Calcitonin gene-related peptide-induced preconditioning improves preservation with cardioplegia. Ann. Thorac. Surg. 62, 1748–1751.
- Lu, R., Li, Y.J., Deng, H.W., 1999. Evidence for calcitonin gene-related peptide-mediated ischemic preconditioning in the rat heart. Regul. Pept. 82, 53-57.
- McLatchie, L.M., Fraser, N.J., Main, M.J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M.G., Foord, S.M., 1998. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339.
- Meldrum, D.R., Dinarello, C.A., Shames, B.D., Cleveland Jr., J.C., Cain, B.S., Banerjee, A., Meng, X., Harken, A.H., 1998. Ischemic preconditioning decreases postischemic myocardial tumor necrosis factor-alpha production. Potential ultimate effector mechanism of preconditioning. Circulation 98 (19 Suppl.) II214–II218.
- Morris, H.R., Panico, M., Etienne, T., Tippins, J., Girgis, S.I., MacIntyre, I., 1984. Isolation and characterization of human calcitonin gene-related peptide. Nature 308, 746–748.
- Murry, C.E., Jennings, R.B., Reimer, K.A., 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136.
- Ou-Yang, W., Qian, X.X., Li, Z.L., Fu, X.Y., Wang, S.H., 1999. The roles of endogenous calcitonin gene-related peptide on myocadial ischemic preconditioning in intact rat. Chin. J. Arterioscler. 7, 24–26 (in Chinese).
- Pagliaro, P., Gattullo, D., Rastaldo, R., Losano, G., 2001. Ischemic preconditioning: from the first to the second window of protection. Life Sci. 69 1-15
- Pajdo, R., Brzozowski, T., Konturek, P.C., Kwiecien, S., Konturek, S.J., Sliwowski, Z., Pawlik, M., Ptak, A., Drozdowicz, D., Hahn, E.G., 2001. Ischemic preconditioning, the most effective gastroprotective intervention: involvement of prostaglandins, nitric oxide, adenosine and sensory nerves. Eur. J. Pharmacol. 427, 263–276.
- Parratt, J.R., 1994. Protection of the heart by ischaemic preconditioning: mechanisms and possibilities for pharmacological exploitation. Trends Pharmacol. Sci. 15, 19–25.
- Peng, C.F., Li, Y.J., Deng, H.W., Xiong, Y., 1996. The protective effects of ischemic and calcitonin gene-related peptide-induced preconditioning on myocardial injury by endothelin-1 in the isolated perfused rat heart. Life Sci. 59, 1507–1514.
- Peng, J., Xiao, J., Ye, F., Deng, H.W., Li, Y.J., 2000. Inhibition of cardiac tumor necrosis factor-alpha production by calcitonin gene-related peptide-mediated ischemic preconditioning in isolated rat hearts. Eur. J. Pharmacol. 407, 303–308.
- Peng, J., Lu, R., Deng, H.W., Li, Y.J., 2002a. Involvement of α -calcitonin gene-related peptide in monophosphoryl lipid A-induced delayed preconditioning in rat hearts. Eur. J. Pharmacol. 436, 89–96.
- Peng, J., Lu, R., Ye, F., Deng, H.W., Li, Y.J., 2002b. The heme oxygenase-1 pathway is involved in calcitonin gene-related peptide-mediated delayed cardioprotection induced by monophosphoryl lipid A in rats. Regul. Pept. 103, 1–7.
- Peng, J., Lu, R., Ye, F., Deng, H.W., Li, Y.J., 2002c. Induction of alphacalcitonin gene-related peptide mRNA expression in rat dorsal root ganglia by heat stress involves the heme oxygenase-1/carbon monoxide pathway. Neuropeptides 35 (6), 1-7.

- Ren, Y.S., Ma, T.G., Wang, H.B., Yu, S.Q., 1993. Protective effects of calcitonin gene-related peptide (CGRP) on myocardial cell injury and calcium and magnesium contents following severe hypoxia and simulated reperfusion. Med. Sci. Res. 21, 177–178.
- Song, Q.J., Li, Y.J., Deng, H.W., 1999a. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide. Naunyn-Schmiedebergs Arch. Pharmakol. 359, 477–483.
- Song, Q.J., Li, Y.J., Deng, H.W., 1999b. Improvement of preservation with cardioplegia induced by heat stress is mediated by calcitonin generelated peptide. Regul. Pept. 79, 141–145.
- Tang, Z.L., Dai, W., Li, Y.J., Deng, H.W., 1999. Involvement of capsaicinsensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn-Schmiedebergs Arch. Pharmakol. 359, 243–247.
- Tosaki, A., Maulik, N., Elliott, G.T., Blasig, I.E., Engelman, R.M., Das, D.K., 1998. Preconditioning of rat heart with monophosphoryl lipid A: a role for nitric oxide. J. Pharmacol. Exp. Ther. 285, 1274–1279.
- Tsuchiya, T., Kishimoto, J., Granstein, R.D., Nakayama, Y., 1996. Quantitative analysis of cutaneous calcitonin gene-related peptide content in response to acute cutaneous mechanical or thermal stimuli and immobilization-induced stress in rats. Neuropeptides 30, 149–157.
- Wellman, G.C., Quayle, J.M., Standen, N.B., 1998. ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J. Physiol. 507 (Pt. 1), 117–129.
- Xi, L., Kukreja, R.C., 2000. Pivotal role of nitric oxide in delayed pharmacological preconditioning against myocardial infarction. Toxicology 155, 37-44.

- Xiao, L., Lu, R., Hu, C.P., Deng, H.W., Li, Y.J., 2001. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin generelated peptide. Eur. J. Pharmacol. 427, 131–135.
- Xing, L., Guo, J., Wang, X., 2000. Induction and expression of beta-calcitonin gene-related peptide in rat T lymphocytes and its significance. J. Immunol. 165, 4359–4366.
- Yamashita, N., Hoshida, S., Taniguchi, N., Kuzuya, T., Hori, M., 1998. Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat. Circulation 98, 1414–1421.
- Yoshida, T., Engelman, R.M., Engelman, D.T., Rousou, J.A., Maulik, N., Sato, M., Elliott, G.T., Das, D.K., 2000. Preconditioning of swine heart with monophosphoryl lipid A improves myocardial preservation. Ann. Thorac. Surg. 70, 895–900.
- Zhang, J.F., Liu, J., Liu, X.Z., Li, M.Y., Sheng, S.L., Zhang, W.J., 1994.
 The effect of calcitonin gene-related peptide on ischemic reperfusion-induced arrhythmias in rats. Int. J. Cardiol. 46, 33–36.
- Zhao, L., Weber, P.A., Smith, J.R., Comerford, M.L., Elliott, G.T., 1997.
 Role of inducible nitric oxide synthase in pharmacological "preconditioning" with monophosphoryl lipid A. J. Mol. Cell Cardiol. 29, 1567–1576.
- Zhou, F.W., Li, Y.J., Deng, H.W., 1999. Early and delayed protection by capsaicin against reperfusion injury in rat hearts. Acta Pharmacol. Sin. 20, 912–916.
- Zhou, Z.H., Deng, H.W., Li, Y.J., 2001. Improvement of preservation with cardioplegic solution by nitroglycerin-induced delayed preconditioning is mediated by calcitonin gene-related peptide. Int. J. Cardiol. 81, 211– 218.